(a) This is an optical image of the microfluidic crossed-channel device. Flow in the center control region (dashed circle) is manipulated in two dimensions by 4 external electrodes (not shown). Scale bar is 500 ?m. (b) This is a schematic of the positioning and imaging technique. A single QD is driven along a trajectory close to the wire by flow control. The inset shows a microcope image of a typical nanowire with 1 ?m scale bar. Credit: JQI

Using single quantum dots to probe nanowires

February 5, 2013

Modern telecommunications happens because of fast electrons and fast photons. Can it get better? Can Moore’s law—the doubling of computing power ever 18 months or so—be sustained? Can the compactness (nm-scale components) of electronics be combined with the speed of photonics?

Well, one such hybrid approach is being explored at the Joint Quantum Institute, where scientists bring together three marvelous physics research fields: microfluidics, quantum dots, and plasmonics to probe and study optical nanostructures with spatial accuracy as fine as 12 nm.

Read more: Using single quantum dots to probe nanowires — phys.org.

Home           Top of page