The boosters of the Block II version of the SLS, capable of placing
up to 130 metric tons into low Earth orbit, could potentially be
powered by derivatives of the F-1 used on the Saturn V.
(credit: NASA)

SLS Block II drives hydrocarbon engine research

by Anthony Young
Monday, January 14, 2013

At the 63rd International Astronautical Congress (IAC) held in Naples, Italy, last October, Steve Cook presented a paper titled “Enabling an Affordable, Advanced Liquid Booster for NASA’s Space Launch System.” Cook was the program manager of the Ares 1 crew launch vehicle under NASA’s Constellation program. NASA developed that launch vehicle using the Solid Rocket Motor technology developed for the Space Shuttle program.

Today, Cook is director of space technologies at Dynetics, based in Huntsville, Alabama. The company is partnering with Pratt & Whitney Rocketdyne (PWR) to revisit the Apollo-era F-1 engine evaluate the feasibility of employing proven elements of that massive hydrocarbon engine design to enable NASA to achieve the payload goal of 130 metric tons for the Block II Space Launch System. However, additional impetus to pursue this development comes from the Air Force and its desire to switch from the Russian RD-180 core booster engine used on the Atlas V.

The US Air Force Research Laboratory Propulsion Directorate has established a new program called the Hydrocarbon Boost Technology Demonstrator. Two companies, Aerojet and PWR, are involved in this program. Dale Thomas, associate director-technical at MSFC, speaking at the Fifth Von Braun Memorial Symposium in Huntsville last October, said, “We have to have higher lift capabilities out of the Space Launch System, and it turns out one of the options we are looking at is RP-based engines, which potentially intersect with the core-stage engine for the Atlas V.”

The association of NASA and the US Air Force regarding launch vehicles and propulsion goes back to the space agency’s founding. In fact, it was the Air Force that issued the requirement for a rocket engine with a thrust of one million pounds-force (4.4 million newtons) that led to the research and development of the F-1 long before it was taken over by NASA for the Apollo program. The F-1 made it possible for the Saturn V to send Apollo to the Moon. With the demise of Project Constellation and reboot of the Ares 5 into the SLS, some saw the F-1 as a possible option to achieve the final 130-metric-ton goal for the SLS (see “A new hydrocarbon engine for America?”, The Space Review, June 14, 2010).

Read more: The Space Review: SLS Block II drives hydrocarbon engine research.

Home           Top of page