The Panspermia Paradox

By Caleb A. Scharf | October 15, 2012 |

The notion of panspermia – the transferral of viable organisms between planets, and even between star systems, seems to be getting a bit more attention these days. One only has to open this previous week’s copy of TIME magazine and there it is, via a very nice piece by Jeffrey Kluger on ‘Aliens Among Us‘.

There is no doubt that planetary surface material is continually being shipped around between rocky planets and moons in our solar system. Ejected by high energy asteroid or comet impacts, chunks of stuff follow a range of orbital trajectories that result in both eventual return to their origins or transferral to the surfaces of other worlds. Increasing evidence suggests that a variety of (typically microbial) organisms could be carried along, surviving both the extremes of pressure and acceleration, as well as exposure to thousands to millions of years of interplanetary space. They need not do this in stasis, tucked well inside the interstices of rock and ice it’s not inconceivable that microbes could be passengers in the natural equivalent of the generation ships of science fiction.

It means that there is a real possibility for life to both cross-infect, and even to be ‘seeded’ from planet or moon to planet or moon. And I’ve written about this before, in the context of life on Mars (see ‘We Are the Aliens‘).

Read more: The Panspermia Paradox | Life, Unbounded, Scientific American Blog Network.

Home           Top of page