A pentagon of super atoms: The illustration depicts the densest possible ordering of five Rydberg excitations in an ensemble of rubidium atoms that are pinned in an optical lattice. © MPI of Quantum Optics

‘Super atoms’: Rydberg excitations form ordered structures in a quantum gas due to long-range interactions

November 23, 2012

(Phys.org)—Future computers are expected to use the laws of quantum physics to accomplish certain tasks in the blink of an eye that require decades for present-day computers. Physicists at the Max Planck Institute of Quantum Optics in Garching near Munich, have now gained fundamental insights into a particular kind of atomic ensemble – a so-called Rydberg gas – that might play a role in the future design of a quantum computer. They observed how “super atoms” formed in the gas and ordered themselves in geometric shapes such as triangles and squares. In future, the researchers intend to control the number and geometric configuration of these super atoms. That would be an important step towards a scalable system for quantum information processing.

How and when quantum computers will start operating still remains uncertain. Even so, there are various suggestions for systems they could use to compute with. One example is an ultra-cold ensemble of numerous atoms that are pinned by light in an artificial crystal. The atoms of such a quantum gas should work in concert, similar to the complex way the elements of an electronic circuit solve tricky problems. Scientists working around Immanuel Bloch, Director of the Max Planck Institute of Quantum Optics, are investigating how atoms interact with one another, and they have now gained new insights into a type of interaction that may contribute to the advancement of quantum information processing.

Read more: 'Super atoms': Rydberg excitations form ordered structures in a quantum gas due to long-range interactions.

Home           Top of page