This image shows the molecular configuration of a simulated ultrastable glass. The purple and greenish-blue spheres represent two different types of atoms (phosphorus and nickel, respectively) that were introduced onto the substrate (the pink spheres) a few at a time in a molecular dynamics simulation, mimicking the vapor deposition process as it occurs in laboratory experiments. Credit: Ivan Lyubimov/University of Chicago

Study reveals ordinary glass’s extraordinary properties

January 6, 2013

Researchers at the universities of Chicago and Wisconsin-Madison raise the possibility of designing ultrastable glasses at the molecular level via a vapor-deposition process. Ultrastable glasses could find potential applications in the production of stronger metals and in faster-acting pharmaceuticals.

Technologically valuable ultrastable glasses can be produced in days or hours with properties corresponding to those that have been aged for thousands of years, computational and laboratory studies have confirmed.

Aging makes for higher quality glassy materials because they have slowly evolved toward a more stable molecular condition. This evolution can take thousands or millions of years, but manufacturers must work faster. Armed with a better understanding of how glasses age and evolve, researchers at the universities of Chicago and Wisconsin-Madison raise the possibility of designing a new class of materials at the molecular level via a vapor-deposition process.

Read more: Study reveals ordinary glass's extraordinary properties — Phys.org.

Home           Top of page