Stanford post-doctoral scholar Kristie Koski developed a clever way to measure the elastic response of intact spider webs using a century-old spectroscopy technique that does not require physical contact with the silk. At left is an intact web and, on the right, a detail demonstrating the pinpoint accuracy of Koski’s system. The portion of the web examined is on the right-center of the photo on the left. Credit: Kristie Koski, Stanford University

Spectroscopy sheds new light on mysteries of spider silk

February 6, 2013 by Andrew Myers

(Phys.org)—Researcher and team are the first to measure all of the elastic properties of an intact spider’s web, drawing a remarkable picture of the behavior of one of nature’s most intriguing structures. The work could lead to new “bio-inspired” materials that improve upon nature.

As fibers go, there’s never been anything quite like spider silk. Stretch it. Bend it. Soak it. Dry it out. Spider silk holds up. It is five times stronger than steel and can expand nearly a third greater than its original length and snap right back like new. Ounce-for-ounce spider silk is even stronger than Kevlar, the man-made fiber used in bulletproof vests.

It would be understandable to think that science knows all there is to know about the remarkable physics of spider silk, but the truth is far from that. Now, using a long-known-but-underutilized spectroscopy technique, a Stanford researcher has shed new light on the mysteries of spider silk.

Read more: Spectroscopy sheds new light on mysteries of spider silk — phys.org.

Home           Top of page