In a minimalistic implementation of Maxwell’s demon, two interacting quantum dots are connected to thermal reservoirs, where one dot takes the role of the demon and the other that of the controlled system. Physicists have theoretically shown that the demon can modify the controlled system’s entropy production. Credit: Philipp Strasberg, et al. ©2013 American Physical Society

Scientists propose creating Maxwell’s demon with two quantum dots

February 1, 2013 by Lisa Zyga

(Phys.org)—When you open your door on a cold winter day, the warm air from your home and the cold air from outside begin to mix and evolve toward thermal equilibrium, a state of complete entropy where the temperatures outside and inside are the same. This situation is a rough example of the second law of thermodynamics, which says that entropy in a closed system never decreases. If you could control the air flow in a way that uses a sufficiently small amount of energy, so that the entropy of the system actually decreases overall, you would have a hypothetical mechanism called Maxwell’s demon.

Maxwell’s demon is named after the physicist James Clerk Maxwell, who first considered the idea in the 1800s. He proposed that the demon would act as a doorman, allowing only hot (fast-moving) molecules to go one way and cold (slow-moving) molecules to go the other way. Theoretically, the demon would be able to heat a hot reservoir and cool down a cold reservoir. As long as the demon uses a sufficiently small amount of energy, the entropy that it creates will be less than the entropy of the system that it lowers. As a result, Maxwell’s demon violates the second law of thermodynamics.

So far, scientists have not been able to physically create Maxwell’s demon, at least not without increasing more entropy elsewhere. However, they have been trying numerous approaches, especially in the last decade.

In a new study, Philipp Strasberg at the Institute of Technology in Berlin, and coauthors have proposed that Maxwell’s demon can be physically implemented with two interacting quantum dots connected to thermal reservoirs, where one dot takes the role of the demon and the other that of the controlled system. The experiment doesn’t violate the second law of thermodynamics, but it provides a very simple, minimalist implementation of the demon.

Read more: Scientists propose creating Maxwell's demon with two quantum dots — phys.org.

Home           Top of page