(Phys.org)—In a study that could lead to advances in the emerging fields of optical computing and nanomaterials, researchers at Missouri University of Science and Technology report that a new class of nanoscale slot waveguides pack 100 to 1,000 times more transverse optical force than conventional silicon slot waveguides.

The findings could lead to advances in developing optical computers, sensors or lasers, say researchers Dr. Jie Gao and Dr. Xiaodong Yang, both assistant professors of mechanical engineering at Missouri S&T. In their research article, published in the Sept. 24 issue of Optics Express, Gao and Yang describe the unusual optical and mechanical properties of nanometer-scale metal-dielectric structures called metamaterials. The researchers created computer simulations of nanometer-scale models of metamaterial slot waveguides, which are structures designed to channel beams of light from one area to another. Waveguides function like tiny filaments or the wires of an integrated circuit, but on a much smaller scale.

Read more: Researchers demonstrate ‘giant’ forces in super-strong nanomaterials — phys.org

Home           Top of page