ECoG electrode location mapped to a 3D rendering of the participant’s brain. Red dots represent ECoG electrodes, and Electrodes 1 and 32 are labeled to indicate grid orientation. The black arrow indicates the central sulcus (CS) of the left hemisphere. (Credit: Wei Wang et al. An Electrocorticographic Brain Interface in an Individual with Tetraplegia. PLoS ONE, 2013; 8 (2): e55344 DOI: 10.1371/journal.pone.0055344)

Paralyzed Man Uses Thoughts Alone to Control Robot Arm, Touch Friend’s Hand, After Seven Years

Feb. 8, 2013 — Researchers at the University of Pittsburgh School of Medicine and UPMC describe in PLoS ONE how an electrode array sitting on top of the brain enabled a 30-year-old paralyzed man to control the movement of a character on a computer screen in three dimensions with just his thoughts. It also enabled him to move a robot arm to touch a friend’s hand for the first time in the seven years since he was injured in a motorcycle accident.

With brain-computer interface (BCI) technology, the thoughts of Tim Hemmes, who sustained a spinal cord injury that left him unable to move his body below the shoulders, were interpreted by computer algorithms and translated into intended movement of a computer cursor and, later, a robot arm, explained lead investigator Wei Wang, Ph.D., assistant professor, Department of Physical Medicine and Rehabilitation, Pitt School of Medicine.

“When Tim reached out to high-five me with the robotic arm, we knew this technology had the potential to help people who cannot move their own arms achieve greater independence,” said Dr. Wang, reflecting on a memorable scene from September 2011 that was re-told in stories around the world. “It’s very important that we continue this effort to fulfill the promise we saw that day.”

Read more: Paralyzed man uses thoughts alone to control robot arm, touch friend's hand, after seven years — Science Daily.

Home           Top of page