Upon contact between the oxygen atoms protruding from the backbone and the metal, the molecules’ internal structure changed in such a way that they lost their semiconducting properties and instead adopted the metallic properties of the surface. Credit: Visualisation: Georg Heimel/HU Berlin

Organic electronics—how to make contact between carbon compounds and metal

February 17, 2013

An international team of scientists around Dr. Georg Heimel and Prof. Norbert Koch from the HZB and the Humboldt University Berlin has unraveled the mystery of what metal and carbon compounds have in common. Their discovery enables more focused improvements to contact layers between metal electrodes and active materials in organic electronic devices.

Until now it was practically impossible to accurately predict which molecules performed well on the job. They basically had to be identified by trial-and-error.

“We have been working on this question for a number of years now and could at last come up with a conclusive picture using a combination of several experimental methods and theoretical calculations,” Georg Heimel explains. The researchers systematically examined different types of molecules whose backbones consist of the same chain of fused aromatic carbon rings. They differed in just one little detail: the number of oxygen atoms projecting from the backbone. These modified molecules were placed on the typical contact metals gold, silver, and copper.

Read more: Organic electronics—how to make contact between carbon compounds and metal — phys.org.

Home           Top of page