Artist’s rendition of the Nuclear Cryogenic Propulsion Stage (NCPS), a nuclear engine intended primarily for the upper stages of launch vehicles and as primary propulsion for deep space missions (Photo: NASA)

NASA team pushing towards thermal nuclear propulsion systems

By Brian Dodson
January 21, 2013

Nuclear-powered rocket engines are not new. In the 1960s, both the U.S. and the Soviet Union developed and tested thermal nuclear rockets fitted with flight-worthy components. However, Project Rover and NERVA (Nuclear Engine for Nuclear Rocket Application) programs were defunded in the early 1970s just before test flights were to start. Now, as part of the Advanced Exploration Systems program at NASA, the Nuclear Cryogenic Propulsion Stage team is tackling a three-year project to demonstrate the viability of and to evaluate materials for thermal nuclear propulsion systems for use in future deep space missions.

A thermal nuclear rocket engine uses a nuclear reactor to heat hydrogen to very high temperatures, with the superheated hydrogen expanding and forced through a nozzle to generate thrust. As such, the performance of a thermal nuclear engine is limited by the high temperature strength of solid materials. Unlike solar or nuclear powered ion or plasma engines, thermal nuclear engines perform largely the same job as chemical rockets (produce multi-g acceleration), but do so with roughly half the fuel requirement.

Read more: NASA team pushing towards thermal nuclear propulsion systems — gizmag.

Home           Top of page