Edwin Thomas, left, and Jae-Hwang Lee holding a polymer material containing three bullets
(Photo: Tommy LaVergne, Rice University)

MIT breakthrough could lead to paper-thin bullet-proof armor

By Jason Falconer

November 12, 2012

Scientists have theorized that paper-thin composite nanomaterials could stop bullets just as effectively as heavy weight body armor, but progress has been hampered by their inability to reliably test such materials against projectile impacts. Researchers at MIT and Rice University have developed a breakthrough stress-test that fires microscopic glass beads at impact-absorbing material. Although the projectiles are much smaller than a bullet, the experimental results could be scaled up to predict how the material would stand up to larger impacts.

The glass beads, described as “millionths of a meter in diameter,” are propelled using a laser pulse technique developed by MIT’s Keith Nelson over several years. His technique was modified with the help of scientists from Rice University in experiments conducted at MIT’s Institute for Soldier Nanotechnologies. Their work, reported in the journal Nature Communications, was supported by the U.S. Army Research Office, which is keen to reduce the burden on soldiers who currently wear armor that contains cumbersome plating an inch thick.

Read more: MIT breakthrough could lead to paper-thin bullet-proof armor — gizmag.

Home           Top of page