(A) Experimental set-up of a 3-mm-diameter graphite disk levitating on NdFeB magnets arranged to face in alternate directions. (B) A laser moves the disk in the direction of the light beam (photographic frames from the video below). Reprinted with permission from Kobayashi, et al. ©2012 American Chemical Society

Magnetically levitating graphite can be moved with laser

December 27, 2012 by Lisa Zyga

(Phys.org)—Magnetic levitation has been demonstrated for a variety of objects, from trains to frogs, but so far no one has developed a practical maglev-based actuator that converts some external source of energy into motion. Now in a new study, researchers for the first time have used a laser to control the motion of a magnetically levitating graphite disk. By changing the disk’s temperature, the laser can change the disk’s levitation height and move it in a controlled direction, which has the potential to be scaled up and used as a light-driven human transportation system. Laser light or sunlight can also cause the levitating disk to rotate at over 200 rpm, which could lead to a new type of light energy conversion system.

The researchers, Dr. Masayuki Kobayashi and Professor Jiro Abe of Aoyama Gakuin University in Kanagawa, Japan (Abe is also at CREST, Japan Science and Technology Agency in Tokyo), have published their study on optically controlling the motion of maglev graphite in a recent issue of the Journal of the American Chemical Society.

“The most important point in this work is the achievement for a real-time motion control technique which can move a magnetically levitating diamagnetic material without contact for the first time in the world,” Abe told Phys.org. “Because this technique is very simple and fundamental, it is expected to apply to various daily living techniques, such as transportation systems and amusement, as well as photo-actuators and light energy conversion systems.”

Read more: Magnetically levitating graphite can be moved with laser — phys.org.

Home           Top of page