This diagram shows one of the core-shell nanoparticles embedded in a host material, as described in a paper in Advanced Materials. The motion of electrons, as shown by brown lines, is bent in such a way that they appear to be unaffected by the presence of the particle, thus allowing them to pass with little resistance. Credit: RESEARCHERS

‘Invisible’ particles could enhance thermoelectric devices

February 6, 2013 by David L. Chandler

Thermoelectric devices—which can either generate an electric current from a difference in temperature or use electricity to produce heating or cooling without moving parts—have been explored in the laboratory since the 19th century. In recent years, their efficiency has improved enough to enable limited commercial use, such as in cooling systems built into the seats of automobiles. But more widespread use, such as to harness waste heat from power plants and engines, calls for better materials.

Now, a new way of enhancing the efficiency of such devices, developed by researchers at MIT and Rutgers University, could lead to such wider applications. The new work, by mechanical engineering professor Gang Chen, Institute Professor Mildred Dresselhaus, graduate student Bolin Liao, and recent postdoc Mona Zebarjadi and research scientist Keivan Esfarjani (both of whom are now on the faculty at Rutgers), has been published in the journal Advanced Materials.

Read more: 'Invisible' particles could enhance thermoelectric devices — phys.org.

Home           Top of page