The Kepler spacecraft’s field of view is superimposed on the night sky in the image above. Launched in 2009, Kepler so far has 105 confirmed planet discoveries to its credit, and has identified 2,740 additional planet candidates. Credit: Carter Roberts.

Hunt for distant planets intensified (w/ Video)

February 19, 2013

(Phys.org)—When astronomers discovered planet GJ 1214b circling a star more than 47 light-years from Earth in 2009, their data presented two possibilities: Either it was a mini-Neptune shrouded in a thick atmosphere of hydrogen and helium, or it was a water world nearly three times the size of Earth.

Along came Jacob Bean, now an assistant professor in astronomy & astrophysics at the University of Chicago, who used a new method called multi-object spectroscopy to analyze the planet’s atmosphere from large, ground-based telescopes. Aided by technology, Bean and his colleagues are surmounting the challenge of inferring the atmospheric composition of planets that were invisible to humans just a few years ago.

“We’re trying to distinguish whether it’s like the gas giants we know about, or something fundamentally different from what we’ve seen in our solar system—an atmosphere predominantly composed of water,” Bean says.

The search for exoplanets—planets beyond our own solar system—has taken off over the last decade, and is now a growing component of UChicago’s research agenda in astronomy. One estimate published in January calculated that our Milky Way galaxy alone contains at least 17 billion Earth-sized planets, with a vast potential for life-sustaining worlds. Pursuing the exoplanet search via complementary methods are Bean and Daniel Fabrycky, another assistant professor in astronomy & astrophysics.

Bean has received a 60-orbit allocation on the Hubble Space Telescope to continue his observations on GJ 1214b, a sign of the work’s importance. Previous HST studies of planetary atmospheres encompassed 10 to 20 orbits. Bean will use a technique called transmission spectroscopy to measure the chemical composition of the planet’s atmosphere with unprecedented precision.

Read more: Hunt for distant planets intensified (w/ Video) — phys.org.

Home           Top of page