The graphene-based transistor has a very high on/off ratio due to combining two types of transport (tunneling and thermionic), and can operate on a transparent and flexible substrate. Image credit: Thanasis Georgiou, et al. ©2013 Macmillan Publishers Limited. All rights reserved.

Graphene-based transistor seen as candidate for post-CMOS technology

January 22, 2013 by Lisa Zyga

(Phys.org)—A new graphene-based transistor in which electrons travel both over a barrier and under it (by tunneling) has exhibited one of the highest performances of graphene-based transistors to date. The combination of the two types of transport enables the transistor to achieve a large difference between its on and off states, giving it a high on/off ratio, which has so far been difficult to achieve in graphene-based transistors. With this advantage, in addition to its ability to operate on transparent and flexible substrates, the new transistor could play a role in post-CMOS devices that are expected to be able to compute at much faster speeds than today’s devices.

Read more: Graphene-based transistor seen as candidate for post-CMOS technology — phys.org.

Home           Top of page