Nanosensors (green spheres) are composed of fat and L-arginine molecules, as well as separate indicator molecules that give off MRI-detectable and light signals when cells are alive. Nanosensors are enclosed in a hydrogel membrane along with liver cells (pink). Nutrients and other relatively small molecules (red) are able to travel across the hydrogel membrane to and from the bloodstream. Credit: Sayo Studios.

Giving transplanted cells a nanotech checkup

by Staff Writers
Baltimore MD (SPX) Feb 13, 2013

Researchers at Johns Hopkins have devised a way to detect whether cells previously transplanted into a living animal are alive or dead, an innovation they say is likely to speed the development of cell replacement therapies for conditions such as liver failure and type 1 diabetes. As reported in the March issue of Nature Materials, the study used nanoscale pH sensors and magnetic resonance imaging (MRI) machines to tell if liver cells injected into mice survived over time.

“This technology has the potential to turn the human body into less of a black box and tell us if transplanted cells are still alive,” says Mike McMahon, Ph.D., an associate professor of radiology at the Johns Hopkins University School of Medicine who oversaw the study. “That information will be invaluable in fine-tuning therapies.”

Read more: Giving transplanted cells a nanotech checkup — Space Daily.

Home           Top of page