COMPUTING NEWS

Graphene Antennas Would Enable Terabit Wireless Downloads

Researchers calculate the potential of using graphene for ultrafast wireless communications.

By David Talbot on March 5, 2013

Want to wirelessly upload hundreds of movies to a mobile device in a few seconds? Researchers at Georgia Tech have drawn up blueprints for a wireless antenna made from atom-thin sheets of carbon, or graphene, that could allow terabit-per-second transfer speeds at short ranges.

“It’s a gigantic volume of bandwidth. Nowadays, if you try to copy everything from one computer to another wirelessly, it takes hours. If you have this, you can do everything in one second—boom,” says Ian Akyildiz, director of the broadband wireless networking laboratory at Georgia Tech.

A terabit per second could be done at a range of about one meter using a graphene antenna, which would make it possible to obtain 10 high-definition movies by waving your phone past another device for one second. Akyildiz and colleagues have also calculated that at even shorter ranges, such as a few centimeters, data rates of up to 100 terabits per second are theoretically possible.

Graphene is a sheet of carbon just one atom thick, in a honeycomb structure, and it has many desirable electronic properties. Electrons move through graphene with virtually no resistance—50 to 500 times faster than they do in silicon.

To make an antenna, the group says, graphene could be shaped into narrow strips of between 10 and 100 nanometers wide and one micrometer long, allowing it to transmit and receive at the terahertz frequency, which roughly corresponds to those size scales. Electromagnetic waves in the terahertz frequency would then interact with plasmonic waves—oscillations of electrons at the surface of the graphene strip—to send and receive information.

Read more: Georgia Tech Researchers Show That Graphene Antennas Would Enable Terabit Wireless Downloads | MIT Technology Review.

Home           Top of page