A single actuator curls and extends as the temperature is changed by 15 degrees Celsius, as shown in this micrograph. On right, a palm-like configuration of actuators all curl together, opening and closing like a tiny hand. The scale bar is 50 microns. Credit: Lawrence Berkeley National Lab

Flexing fingers for micro-robotics: Scientists create a powerful, microscale actuator

December 17, 2012

Researchers with the DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley, have developed an elegant and powerful new microscale actuator that can flex like a tiny beckoning finger. Based on an oxide material that expands and contracts dramatically in response to a small temperature variation, the actuators are smaller than the width of a human hair and are promising for microfluidics, drug delivery, and artificial muscles.

“We believe our microactuator is more efficient and powerful than any current microscale actuation technology, including human muscle cells,” says Berkeley Lab and UC Berkeley scientist Junqiao Wu. “What’s more, it uses this very interesting material—vanadium dioxide—and tells us more about the fundamental materials science of phase transitions.”

Read more: Flexing fingers for micro-robotics: Scientists create a powerful, microscale actuator — phys.org.

Home           Top of page