Ex nihilo: Dynamical Casimir effect in metamaterial converts vacuum fluctuations into real photons

March 8, 2013 by Stuart Mason Dambrot

(Phys.org) —In the strange world of quantum mechanics, the vacuum state (sometimes referred to as the quantum vacuum, simply as the vacuum) is a quantum system’s lowest possible energy state. While not containing physical particles, neither is it an empty void: Rather, the quantum vacuum contains fluctuating electromagnetic waves and so-called virtual particles, the latter being known to transition into and out of existence. In addition, the vacuum state has zero-point energy – the lowest quantized energy level of a quantum mechanical system – that manifests itself as the static Casimir effect, an attractive interaction between the opposite walls of an electromagnetic cavity. Recently, scientists at Aalto University in Finland and VTT Technical Research Centre of Finland demonstrated the dynamical Casimir effect using a Josephson metamaterial embedded in a microwave cavity. They showed that under certain conditions, real photons are generated in pairs, and concluded that their creation was consistent with quantum field theory predictions.

Read more: Ex nihilo: Dynamical Casimir effect in metamaterial converts vacuum fluctuations into real photons — phys.org.

Home           Top of page