(Bottom left) Photograph of the microcooler mounted into a vacuum flange and surrounded by a PCB, with gas connections. (Top right) The microcooler shown next to a euro coin for size comparison. Credit: H. S. Cao, et al. ©2013 IOP Publishing Ltd

Electronics like it cold, and 30 K cryocooler delivers

January 18, 2013 by Lisa Zyga

(Phys.org)—For many electronic devices, colder is better. At low temperatures, electronic devices such as sensors and detectors operate with a higher efficiency and better overall performance than they do at room temperature. And superconducting devices, known for their zero electrical resistance, require extremely cold temperatures to operate. But in order to make cryogenic electronics more widespread, micro-sized cryogenic coolers need to become cheaper and more reliable. Addressing this challenge, scientists have designed and fabricated a micro-sized cryocooler that cools devices down to 30 K (-243 °C, -406 °F) in about an hour, and has a simple design that lends itself to high-yield fabrication.

The researchers, Haishan Cao from the University of Twente in Enschede, The Netherlands, and coauthors from Kryoz Technologies and Micronit Microfluidics, both in Enschede, as well as from the University of Twente, have published a paper on the new micro-sized cryogenic cooler in a recent issue of the Journal of Micromechanics and Microengineering.

The new cryocooler is a micro-sized version of a Joule-Thomson (JT) cryocooler, which cools by causing a high-pressure gas to expand as it flows from a high-pressure region to a low-pressure region. As James Joule and William Thomson discovered in 1852, a gas that expands in this way under certain conditions will cool down, a finding now known as the Joule-Thomson effect.

Read more: Electronics like it cold, and 30 K cryocooler delivers — phys.org.

Home           Top of page