Brookhaven physicists Weidong Si (left) and Qiang Li look into the vacuum chamber where the new high-field iron-based superconductors are made through a process called pulsed-laser deposition.

Breakthrough iron-based superconductors set new performance records

January 10, 2013

(Phys.org)—The road to a sustainably powered future may be paved with superconductors. When chilled to frigid temperatures hundreds of degrees Celsius below zero, these remarkable materials are singularly capable of perfectly conducting electric current. To meet growing global energy demands, the entire energy infrastructure would benefit tremendously from incorporating new electricity generation, storage, and delivery technologies that use superconducting wires. But strict limits on temperature, high manufacturing costs, and the dampening effects of high-magnetic fields currently impede widespread adoption.

Now, a collaboration led by scientists at the U.S. Department of Energy’s Brookhaven National Laboratory have created a high performance iron-based superconducting wire that opens new pathways for some of the most essential and energy-intensive technologies in the world. These custom-grown materials carry tremendous current under exceptionally high magnetic fields—an order of magnitude higher than those found in wind turbines, magnetic resonance imaging (MRI) machines, and even particle accelerators. The results— published online January 8 in the journal Nature Communications—demonstrate a unique layered structure that outperforms competing low-temperature superconducting wires while avoiding the high manufacturing costs associated with high-temperature superconductor (HTS) alternatives.

Read more: Breakthrough iron-based superconductors set new performance records — phys.org.

Home           Top of page